Journal Articles
Boilson, A., Connolly, R., Staines, A., Davis, P., Connolly, J., Weston, D. (2019). Improving European Healthcare Systems through the Development of a Realist Evaluation Framework for a European Public Health Data Analytic Project. Biomed Central (BMC) Implementation Science Journal.
Boilson, A., Staines, A., Connolly, J., Connolly, R., Davis, P., Weston, D. (2019). Qualitative Evaluation of a Multi-Level Framework of Technology Acceptance & Use for a European Health Data Analytic Platform. International Journal of Informatics.
Staines, A., Gauttier, S., Connolly, R., Davis, P., Connolly, J., Weston, D., Boilson, A. (2019). Q-Method and the Bootstrap – Visualizations. The International Journal of Q Methodology
Boilson, A. Gauttier, S., Connolly, R., Davis, P., Connolly, J., Weston, D., Staines, A. (2019). Application of Q-Methodology & Mixed Methods Design to Explore the Utility of a Data Analytic Framework. Journal of the Operational Research Society
Epelde, G., Beristain, A., Álvarez, R., Arrúe, M., Ezkerra, I., Belar, O., Bilbao, R., Nikolic, G., Shi, X., De Moor, B., & Mulvenna, M. (2020). Quality of data measurements in the Big Data era—Lessons learned from MIDAS project. IEEE Instrumentation & Measurement Magazine, 23. (Accepted for August 2020 issue (presumably 23(4)) and waiting for final production version)
Scientific publications in progress
Title |
Lead Partner |
Type |
Status |
MeSH News: a new classifier designed to annotate health news with MeSH headings |
QUINT |
Journal paper |
Under review |
Secure Web application architecture for sensitive data and closed networks |
VTT |
Journal paper |
Under review |
MIDAS Platform Architecture |
KUL |
Journal paper |
Under development |
Enhancing the interactive visualisation of a data preparation tool from in-memory fitting to Big Data sets |
VICOM |
Conference paper |
Under development |
An Ensemble-Based Feature Selection Method – A Case Study of Childhood Obesity |
KUL |
Conference paper |
Under development |
Conference Papers
Black, M., Wallace, J., Rankin, D., Carlin, P., Bond, R., Mulvenna, M., Cleland, B., Fischaber, S., Epelde, G., Nikolic, G., Pajula, J., Connolly, R. (2019). Meaningful Integration of Data, Analytics and Services of Computer-Based Medical Systems: The MIDAS Touch. 32nd IEEE CBMS International Symposium on Computer-Based Medical Systems
Boilson, A., Gauttier S., Connolly, R., Davis, P., Connolly, J., Weston, D., Staines, A. (2019). Q-Method Evaluation of a European Health Data Analytic End User Framework. ENTRENOVA Conference Proceedings.
Connolly, J., Staines, A., Connolly, R., Davis, P. (2018) Using Big Data to Transform Health: The Importance of Evaluation Frameworks Irish Academy of Management Annual Conference Cork, , 03-SEP-18 – 05-SEP-18
Costa, J.P., Fuart, F., Grobelnik, M., Leban, G., Stopar, L., Carlin, P. (2017) Text mining open datasets to support public health. WITS 2017
Costa, J.P., Škraba, P., Paolotti, D., Mexia, R. (2018). A topological data analysis approach to Influenza-like-illness. KDD Healthday 2018.
Costa, J.P., Stopar, L. Fuart, F., Grobelnik, M., Santanam, R., Lu,C. , Carlin, P., Black, M., Wallace, J. (2018). Mining MEDLINE for the visualisation of a global perspective on biomedical knowledge. KDD Project Showcase 2018.
Costa, J.P., Fuart, F., Grobelnik, M., Leban, G., L. Stopar, L., Carlin, P. (2017). Text mining open datasets to support public health. Workshop on Information Technologies and Systems (WITS2017)
Costa, J.P., Fuart, F., Grobelnik, M., Leban, G., Košmerlj, A., and Belyaeva, E. (2018). Health news media, public health and digital epidemiology. Data and Algorithm Bias workshop at the CIKM conf. 2018.
Costa, J.P., Fuart, F., Stopar, L, Paolloti, D., Hirsch, M., Carlin, P., Mexia, R. (2019). Local-to-global analysis of influenza-like-illness data. SiKDD-2019.
Pita Costa, J.P., Fuart, F., Stopar, L., Grobelnik, M., Mladenić, D. (2019). Health News Bias and its impact in Public Health. SiKDD-2019.
Newsletters
- MIDAS Newsletter #1
- MIDAS Newsletter #3
- MIDAS Newsletter #4
- MIDAS Newsletter #5
- MIDAS Newsletter #6
- MIDAS Newsletter #7
- MIDAS Newsletter #8
- MIDAS Newsletter #9